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Abstract
An approach towards quantum games is proposed that uses the unusual
probabilities involved in EPR-type experiments directly in two-player games.

PACS numbers: 03.65.Ta, 03.65.Ud

1. Introduction

The emerging field of quantum games [1–24] has attracted increasing attention during recent
years. Some authors [6, 8, 17, 23] have pointed out that, in certain cases, it is also possible
to construct a classical description of quantum games, resulting in the presently continuing
debate [17, 23, 25] about their true quantum content and character.

Game theory is based on, and extensively uses, the theory of probability [26]. The
peculiar probabilities arising in the EPR-type experiments [27–30] are considered the basis of
arguments for quantum non-locality [31]. Sometimes, these probabilities are also presented
as the most convincing demonstration of how quantum and classical mechanics differ from
each other. The motivation behind the EPR-type experiments is the EPR paradox [27]. In
an attempt to resolve the EPR paradox, Mückenheim [32] in 1982 made use of negative
probability functions. Moreover, recent years have witnessed explicit proofs [33–35] showing
how certain probability measures involved in some local hidden variable (LHV) models of the
EPR paradox attain negative values. Quoting Mückenheim [36], ‘Kolmogorov’s axiom may
hold or not; the probability for the existence of negative probabilities is not negative’. Also,
Feynman [37, 38] once cleverly anticipated [34, 35] that ‘The only difference between the
classical and quantum cases is that in the former we assume that the probabilities are positive-
definite’. The physical meaning of the negative probability measures is indeed far from
obvious and this particular attempt to resolve the EPR paradox is taken [39] ‘as unattractive
as all others’.

In the present paper, we adapt a positive attitude towards negative probabilities by
observing that, in spite of their unattractiveness, they seem to have an undisputed value in
terms of providing an indication to what can be taken as the true quantum character in certain
quantum-mechanical experiments. Secondly, the negative probabilities, though labelled as
unattractive, have a potential to provide an alternative, and perhaps much shorter, route to
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the construction of simple examples of quantum games. These constructions designed for
the physical implementation, and realization, of quantum games will, of course, have the
EPR-type experiments as their underlying physical structure.

The approach towards quantum games, developed in this paper, can be divided into two
steps. In the first step, elementary probability theory is used to analyse a hypothetical physical
implementation of a bi-matrix game, that is motivated by, and has close similarities with,
the experimental set-up of the EPR-type experiments. Looking from a distance, this analysis
can also be taken as a procedure that re-defines the classical game in a way that justifies and
opens the way towards the next step in the present approach. In the second step, the peculiar
probabilities coming out of the EPR-type experiments are introduced to see their resulting
effects on players’ payoff functions and solutions of the game.

Apart from being a shortcut towards demonstration and construction of simple quantum
games, to us this approach seems to be in demand presently both in game theory and in
economics [14]. Recent years have witnessed serious efforts to entertain the methods and
notation of quantum mechanics in these domains. In our view, in spite of these developments,
it remains a fact that in these domains the concepts of wavefunction, ket bra notation and
Hermitian operators are still associated with an alien identity, with quantum mechanics believed
to be their only right place. This paper tries to fill in this gap by looking at how quantum games
can also be understood by using the peculiar probabilities that appear in certain well-known
quantum-mechanical experiments, without recourse to the mathematical tools of quantum
mechanics. In other words, we try to show how the unusual probabilities in the EPR paradox
have a potential to leave their mark on game theory.

The rest of this paper is organized as follow. Section 2 compares playing bi-matrix game
with the setting of EPR-type experiments to motivate a four-coin physical implementation of
a bi-matrix game. Section 3 develops such a hypothetical physical implementation. Section 4
builds up on the construction of the previous section to look at how the game is affected when,
instead of four coins, two correlated particles are used to play the game.

2. Physical implementation of a bi-matrix game

We consider a two-player two-strategy non-cooperative game that is given as a bi-matrix. Two
players Alice and Bob are not allowed to communicate and each player has to go for one of
the two available strategies. A usual physical implementation of this game consists of giving
two coins to Alice and Bob, each receiving one. Both receive the coin in head state. Each
player plays his/her strategy that consists of flipping/not flipping the coin. Afterwards, the
players return their coins to a referee. The referee observes the coins and rewards the players
according to the strategies they have played and the game under consideration.

Consider now the well-known setting of EPR-type experiments. Once again, Alice and
Bob are spatially separated and are unable to communicate with each other. Both receive
one half of a pair of particles that originate from a common source. In an individual run,
both choose one of the two options (strategies) available to him/her. The strategies are
usually two directions in space along which measurements can be made. Each measurement
generates +1 or −1 as the outcome, which can be associated with head and tail states of a coin,
respectively. Experimental results are recorded for a large number of individual runs of the
experiment.

Apparent similarities between the two-coin physical implementation of a bi-matrix game
and the EPR-type experiments can immediately be noted. The similarities hint to use the
EPR-type experiments to play bi-matrix games. However, before moving further along that



Playing games with EPR-type experiments 9553

direction, following observations are made:

(1) In two-coin implementation of a bi-matrix game, a player knows the head or tail state of
his/her coin after he/she has played his/her strategy.

(2) In the EPR-type experiment when a player decides his/her strategy, as one of the two
available directions along which a measurement is to be made, he/she does not know
whether the measurement is going to result in +1 or −1, until the measurement has
actually been made.

It shows that a two-coin physical implementation of a bi-matrix game is not a right analogy
to EPR-type experiments. In an individual run of the EPR-type experiment, each player has to
chose from one of the two available directions. After the player makes a choice between the
two directions, the measurement generates +1 or −1 as an outcome. It motivates a four-coin
implementation of the game.

3. Bi-matrix games with four coins

A bi-matrix game can also be played using four coins instead of the two described above. A
procedure that physically implements the game with four coins is as follows. Its motivation
comes from the EPR-type experiments and it serves to make possible, in the next step, a
smoother transition towards a situation when the same game is played using those experiments.

The players Alice and Bob are given two coins each. It is not known, and it does
not matter, whether the given coins are in head or tail states. Before the game starts, the
referee announces that a player’s strategy is to choose one out of the two coins in his/her
possession. After playing their strategies, the players give the two chosen coins, representing
their strategies, to the referee. The referee tosses both the coins together and records the
outcomes. The tossing of the coins is repeated a large number of times, while each player
plays his/her strategy each time he/she is asked to choose one of the two coins in his/her
possession. After a large number of individual runs, the referee rewards the players according
to the strategies they have played and the probability distributions followed by the four coins
during their tossing.

After stating the general idea, we consider in the following an example of a symmetric
bi-matrix game.

Alice
X1

X2

Bob
X́1 X́2(

(K,K) (L,M)

(M,L) (N,N)

)
, (1)

where X1, X2, X́1 and X́2 are the players’ strategies. Entries in parentheses are Alice’s and
Bob’s payoffs, respectively.

We want to physically implement the game (1) using repeated tossing of four coins which
follows the following probability distribution:

Alice

Bob

S1
H
T

Ś1

H T(
p1 p2

p3 p3

)
Ś2

H T(
p5 p6

p7 p8

)

S2
H
T

(
p9 p10

p11 p12

) (
p13 p14

p15 p16

)
, (2)
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where, for example, S1 is Alice’s pure strategy to ‘always select the coin 1’, etc. The pure
strategies S2, Ś1 and Ś2 can similarly be interpreted. Also, H ∼ head and T ∼ tail and, for
obvious reasons, we have

4∑
1

pi =
8∑
5

pi =
12∑
9

pi =
16∑
13

pi = 1. (3)

In construction of the four-coin statistics (2), the following points should be taken into
consideration.

(1) The statistics (2) may convey the impression that in an individual run both players forward
both of their coins to the referee who tosses the four coins together. In fact, in an individual
run, the referee tosses only two coins. The statistics (2) are generated under the assumption
that there is randomness involved in players’ strategies to go for one or the other coin.

(2) Associated with the above impression is the fact that, in every individual run, the statistics
(2) assign head or tail states to the two coins that have not been tossed. So that, in each
individual run, two tosses are counterfactual.

Because counterfactual reasoning is involved in the derivation of the Bell–CHSH
inequality, some authors [40–42] have argued that quantum non-locality [31] (or locality)
does not follow from the violation of the Bell–CHSH inequality in the EPR-type experiments.
With reference to our coin game, counterfactual reasoning means that two coins, out of four,
are not tossed in each individual turn, but still these untossed coins are assigned head or tail
states in the mathematical steps used in the derivation of the Bell–CHSH inequality. This
assignment is often justified under the label of realism. In the EPR-type experiments, the
measurements along two directions, for each player, do not commute with each other, i.e.
joint measurements cannot be made. Based on this fact, some arguments [43–45] state that
the reasons for the violation of the Bell–CHSH inequality in the EPR-type experiments reside
only in the non-commutative nature of the quantum measurements involved.

To play the game (1) with the four-coin statistics (2), we assume that the referee has the
following recipe1 to reward the players:

PA(S1, Ś1) = Kp1 + Lp2 + Mp3 + Np4

PA(S1, Ś2) = Kp5 + Lp6 + Mp7 + Np8

PA(S2, Ś1) = Kp9 + Lp10 + Mp11 + Np12

PA(S2, Ś2) = Kp13 + Lp14 + Mp15 + Np16




, (4)

where PA(S1, Ś2), for example, is Alice’s payoff when she plays S1 and Bob plays Ś2. The
corresponding payoff expressions for Bob can be found by the transformation L � M in
equations (4). The recipe, of course, makes sense if repeated tosses are made with four coins.
Because S1, S2, Ś1 and Ś2 are taken as players’ pure strategies, a mixed strategy for Alice, for
example, is convex linear combination of S1 and S2.

We now find constraints on the four-coin statistics (2) such that each equation in (4)
represents a mixed-strategy payoff for the bi-matrix game (1), that can be written in a bi-linear
form. To allow this interpretation for the payoffs (4), four probabilities r, s, ŕ and ś are
required that can give a bi-linear representation to the payoffs (4), i.e.

PA(S1, Ś1) = Krŕ + Lr(1 − ŕ) + Mŕ(1 − r) + N(1 − r)(1 − ŕ)

PA(S1, Ś2) = Krś + Lr(1 − ś) + Mś(1 − r) + N(1 − r)(1 − ś)

PA(S2, Ś1) = Ksŕ + Ls(1 − ŕ) + Mŕ(1 − s) + N(1 − s)(1 − ŕ)

PA(S2, Ś2) = Ksś + Ls(1 − ś) + Mś(1 − s) + N(1 − s)(1 − ś)




. (5)

1 The recipe (4) is not unique and others may be suggested. Any recipe is justified if it is able to reproduce the game
under consideration within the description of the statistical experiment involved.
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It then allows us to make the association

S1 ∼ r, S2 ∼ s, Ś1 ∼ ŕ , Ś2 ∼ ś, (6)

where r, s, ŕ and ś are the probabilities of heads for coins S1, S2, Ś1 and Ś2, respectively. In
case a consistent set of these four probabilities is found, each equation in (4) can be interpreted
in terms of a mixed-strategy game between the two players. So that, the four pairs

(r, ŕ), (r, ś), (s, ŕ), (s, ś) (7)

represent the four possible situations that may result when each player has got two strategies
to choose from. For example, the strategy pair (S1, Ś2) is associated with the pair (r, ś) and it
corresponds to the mixed-strategy game given as

Alice
r

(1 − r)

Bob
ś (1 − ś)(

(K,K) (L,M)

(M,L) (N,N)

)
(8)

In this game, Alice plays S1 with probability of heads r and Bob plays Ś2 with probability of
heads ś. The other equations in (5) can be given a similar interpretation.

We now find constraints on the four-coin statistics (2) that make the payoffs of
equation (4) identical to the bi-linear payoffs of equation (5) for any real numbers K,L,M

and N. A comparison of these equations shows that it happens when r, s, ŕ and ś depend on
pi , for 16 � i � 0, as follows:

rŕ = p1, r(1 − ŕ) = p2, ŕ(1 − r) = p3, (1 − r)(1 − ŕ) = p4

rś = p5, r(1 − ś) = p6, ś(1 − r) = p7, (1 − r)(1 − ś) = p8

sŕ = p9, s(1 − ŕ) = p10, ŕ(1 − s) = p11, (1 − s)(1 − ŕ) = p12

sś = p13, s(1 − ś) = p14, ś(1 − s) = p15, (1 − s)(1 − ś) = p16




. (9)

The probabilities r, s, ŕ and ś can be read from (9) as

r = p1 + p2, s = p9 + p10, ŕ = p1 + p3, ś = p5 + p7, (10)

provided that pi satisfy

p1 + p2 = p5 + p6, p1 + p3 = p9 + p11

p9 + p10 = p13 + p14, p5 + p7 = p13 + p15

}
. (11)

With the defining relations (10), and the constraints (11) on the four-coin statistics, each pair
in (S1, Ś1), (S1, Ś2), (S2, Ś1) and (S2, Ś2) gains interpretation of a mixed-strategy game. The
correspondence (6) means that, for example, Alice’s payoffs read as

PA(S1, Ś1) = PA(r, ŕ), PA(S1, Ś2) = PA(r, ś)

PA(S2, Ś1) = PA(s, ŕ), PA(S2, Ś2) = PA(s, ś)

}
. (12)

Now, suppose (s, ś) is a Nash equilibrium (NE), i.e.

{PA(s, ś) − PA(r, ś)} � 0, {PB(s, ś) − PB(s, ŕ)} � 0. (13)

Using equations (5), one gets

PA(s, ś) − PA(r, ś) = (s − r) {(K − M − L + N)ś + (L − N)} � 0
PB(s, ś) − PB(s, ŕ) = (ś − ŕ) {(K − M − L + N)s + (L − N)} � 0

}
. (14)

Consider the game of prisoners’ dilemma (PD) which is produced when M > K > N > L in
the matrix (1). We select our first representation of PD by taking

K = 3, L = 0, M = 5 and N = 1, (15)
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and the inequalities (14) are reduced to

0 � (s − r)(1 + ś), 0 � (ś − ŕ)(1 + s). (16)

Now from (14), the pair (s, ś) is a NE when both inequalities in (16) are true for all r, ŕ ∈ [0, 1].
Because (1 + s) � 1 and (1 + ś) � 1, it produces s = ś = 0 as the equilibrium. In the present
set-up to play PD, this equilibrium appears if, apart from the constraints of equations (10, 11),
we also have

s = p9 + p10 = 0, ś = p5 + p7 = 0, (17)

which are other constraints on the four-coins statistics (2) to hold true if the PD produces the
NE (s, ś) = (0, 0).

The above analysis can be reproduced for other probability pairs in (7). For example,
when (r, ś) is NE, i.e.

{PA(r, ś) − PA(s, ś)} � 0, {PB(r, ś) − PB(r, ŕ)} � 0, (18)

we again get (r, ś) = (0, 0). Relations (10) though now state that it will exist as a NE when

p1 + p2 = 0, p5 + p7 = 0, (19)

which should, of course, be true along with relations (11). That is, in order to reproduce a
particular NE in the bi-matrix game, the probabilities of heads of the four coins representing
the game need to be fixed. Also, from the bi-linear payoffs (5) it is clear that at the equilibria
(s, ś) = (0, 0) and (r, ś) = (0, 0) the reward for both the players is N.

Summarizing, we have shown that when the four-coin statistics (2) satisfy the constraints
of equations (3) and (11), the payoffs (4) can be interpreted in terms of a mixed-strategy
version of a bi-matrix game. In this setting, four strategies S1, S2, Ś1 and Ś2 available to
the players are associated with the probabilities r, s, ŕ and ś, respectively. This association
allows us to interpret the payoff recipe of equation (4) in terms of a mixed-strategy game. We
showed that when r, s, ŕ and ś are expressed in terms of the probabilities pi for 16 � i � 1
(as it is the case in equations (10)), the bi-linear payoffs (5) become identical to the payoffs of
equation (4). This procedure is designed to re-express playing a bi-matrix game with four
coins in a way that choosing which coin to toss is a player’s strategy.

4. Games with perfectly correlated particles

The re-expression of playing a bi-matrix game in terms of a four-coin tossing experiment,
performed between two players, opens the way to see what happens when the four-coin
statistics become correlated. Especially, what if the correlations go beyond what is achievable
with the so-called classical ‘coins’.

Presently, there appears a general agreement in quantum physics community that the
EPR-type experiments, performed on correlated pairs of particles, violate the predictions of
LHV models. Negative probabilities are found to emerge when certain LHV models are
forced to predict the experimental outcomes of the EPR-type experiments. For example,
Han, Hwang and Koh [33] showed the need for negative probabilities when explicit solutions
can reproduce quantum-mechanical predictions for some spin-measurement directions for all
entangled states. In Han et al’s analysis, a special basis is used to show the appearance of
negative probabilities for a class of LHV models.

Rothman and Sudarshan [35] demonstrated that quantum mechanics does predict a set of
probabilities that violate the CHSH inequality; however, these probabilities are not positive
definite. Nevertheless, they are physically meaningful in that they give the usual quantum-
mechanical predictions in physical situations. Rothman and Sudarshan observed that all
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derivations of Bell’s inequalities assume that LHV theories produce a set of positive-definite
probabilities for detecting a particle with a given spin orientation.

Using a similar approach, Cereceda [34] proved independently the necessity of negative
probabilities in all instances where the predictions of the LHV model are made to violate the
Bell–CHSH inequality. Interestingly, Cereceda’s proof does not rely on any particular basis
states or measurement directions. In the concluding section of his paper, Cereceda analyses
the case of pairs of particles that have perfect correlation between them. He then proceeds to
show the necessity of negative probabilities for those pairs.

The necessity of negative probability measures, to explain the experimental outcomes in
the EPR-type experiments, motivates questions about the effects and consequences these may
have on solution of a game which is physically implemented using such experiments. This
question can be expressed as follows. What happens to the players’ payoffs and solutions
of a game that is physically implemented using pairs of perfectly correlated particles? It
seems quite reasonable to demand that, when the predictions of LHV model agree with the
Bell–CHSH inequality, the game attains a classical interpretation.

One clear advantage of the above approach towards quantum games appears to be that it
is possible to see, without using the machinery of quantum mechanics, how game-theoretical
solutions are affected when a game is physically implemented using quantum mechanically
correlated pairs of particles.

We follow Cereceda’s notation [34] for probabilities in the EPR-type experiments designed
to test the Bell–CHSH inequality. Two correlated particles 1 and 2 are emitted in opposite
directions from a common source. Afterwards, each of the particles enters its own measuring
apparatus which can measure either one of the two physical variables at a time. We denote
these variables S1 or S2 for particle 1 and Ś1 or Ś2 for particle 2. These variables can take
possible values of +1 and −1. The source emits a very large number of particle pairs.

To describe this experiment, Cereceda [34] considers a deterministic hidden variable
model as follows. The model assumes that there exists a hidden variable λ for every pair of
particles emitted by the source. λ has a domain of variation � and it determines locally (for
example, at the common source) the response of the particle to each of the measurements
they can be subjected to. It is possible to partition the set of all λ into 16 disjoint subsets
�i (with respect to probability measure mi) according to the outcomes of the four possible
measurements, S1 or S2 for particle 1 and Ś1 or Ś2 for particle 2. Table 1 is reproduced from
Cereceda’s paper. It shows the 16 rows characterizing the subsets �i . The ith row gives the
outcome of different measurements when the particle pair is described by a hidden variable
pertaining to the subset �i .

The probabilities pi are given below in obvious notation [34].

p1 ≡ p(S1+; Ś1+) = m1 + m2 + m3 + m4, (20)

p2 ≡ p(S1+; Ś1−) = m5 + m6 + m7 + m8, (21)

p3 ≡ p(S1−; Ś1+) = m9 + m10 + m11 + m12, (22)

p4 ≡ p(S1−; Ś1−) = m13 + m14 + m15 + m16, (23)

p5 ≡ p(S1+; Ś2+) = m1 + m3 + m5 + m7, (24)

p6 ≡ p(S1+; Ś2−) = m2 + m4 + m6 + m8, (25)

p7 ≡ p(S1−; Ś2+) = m9 + m11 + m13 + m15, (26)

p8 ≡ p(S1−; Ś2−) = m10 + m12 + m14 + m16, (27)

p9 ≡ p(S2+; Ś1+) = m1 + m2 + m9 + m10, (28)
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Table 1. The set � is partitioned into 16 possible subsets. The hidden variables in each subset �i

uniquely determine the outcomes for each of the four possible single measurements S1, Ś1, S2 and
Ś2. The table is reproduced from [34].

Subset of � S1 Ś1 S2 Ś2 Probability measure

�1 + + + + m1

�2 + + + − m2

�3 + + − + m3

�4 + + − − m4

�5 + − + + m5

�6 + − + − m6

�7 + − − + m7

�8 + − − − m8

�9 − + + + m9

�10 − + + − m10

�11 − + − + m11

�12 − + − − m12

�13 − − + + m13

�14 − − + − m14

�15 − − − + m15

�16 − − − − m16

p10 ≡ p(S2+; Ś1−) = m5 + m6 + m13 + m14, (29)

p11 ≡ p(S2−; Ś1+) = m3 + m4 + m11 + m12, (30)

p12 ≡ p(S2−; Ś1−) = m7 + m8 + m15 + m16, (31)

p13 ≡ p(S2+; Ś2+) = m1 + m5 + m9 + m13, (32)

p14 ≡ p(S2+; Ś2−) = m2 + m6 + m10 + m14, (33)

p15 ≡ p(S2−; Ś2+) = m3 + m7 + m11 + m15, (34)

p16 ≡ p(S2−; Ś2−) = m4 + m8 + m12 + m16. (35)

Combining equations (3) with table 1 gives
16∑
i=1

mi = 1. (36)

Continuing with Cereceda’s description [34], an example is now considered. Suppose the
particle pair is described by a given λ ∈ �2, then the particles must behave as follows. If S1 is
measured on particle 1 the result will be +1, if S2 is measured on particle 1 the result will be
+1, if Ś1 is measured on particle 2 the result will be +1 and if Ś2 is measured on particle 2 the
result will be −1. Also for each of the plans, the results of measurements made on particle 1
are independent of the results of measurements made on particle 2.

For perfectly correlated particles, two of the probabilities p2 and p3 can be set equal
to zero. Physically, it means that the results for the joint measurement of two observables,
one for each particle, must both be either +1 or −1. From a physical point of view, it is
reasonable to suppose that, for the case in which p2 = 0 and p3 = 0, the probability measures
m5,m6,m7,m8,m9,m10,m11 and m12 also vanish. It can be verified from equations (21) and
(22). If this is not the case then joint detection events will be generated by the LHV model,
which do not happen according to the assumptions made. Cereceda showed that, in this case,
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when the predictions of the LHV model violate the Bell–CHSH inequality, the negativity of
either m4 or m13 can be proved.

We assume now that the probabilities pi appearing in equations (4) correspond to the
LHV model of the EPR-type experiments performed to test the Bell–CHSH inequality. Like it
is the case with the four-coin tossing experiment, the payoffs (4) can be interpreted as bi-linear
payoffs. To do this we use equations (10) and (11) to get

r = p1 = p5 + p6, ŕ = p1 = p9 + p11, s = p9 + p10, ś = p5 + p7. (37)

But p2 = p3 = 0, so that from the first equation of (9) we have r(1 − ŕ) = ŕ(1 − r)

which gives p1 = 0 or 1 because r = ŕ = p1 from (37). We select2 p1 = 1. Now, from
equations (24) and (25), we have p5 + p6 = ∑8

i=1mi and because
∑16

i=1mi = 1 from
equation (36) and mi = 0 for 12 � i � 5, we get

r = ŕ = 1 = m1 + m2 + m3 + m4

s = m1 + m2 + m13 + m14

ś = m1 + m3 + m13 + m15


 . (38)

With these relations, the bi-linear payoffs (5) are written as

PA(S1, Ś1) = K, (39)

PA(S1, Ś2) = L + (K − L)(m1 + m3 + m13 + m15), (40)

PA(S2, Ś1) = M + (K − M)(m1 + m2 + m13 + m14), (41)

PA(S2, Ś2) = (K − L − M + N)

× (m1 + m2 + m13 + m14)(m1 + m3 + m13 + m15)

+ (L − N)(m1 + m2 + m13 + m14)

+ (M − N)(m1 + m3 + m13 + m15) + N




. (42)

Each of the correlated payoffs (40)–(42) can be split into two parts, i.e.

PA(S1, Ś2) = PAa(S1, Ś2) + PAb(S1, Ś2)

PA(S2, Ś1) = PAa(S2, Ś1) + PAb(S2, Ś1)

PA(S2, Ś2) = PAa(S2, Ś2) + PAb(S2, Ś2)


 , (43)

where

PAa(S1, Ś2) = L + (K − L)(m1 + m3), (44)

PAb(S1, Ś2) = (K − L)(m13 + m15), (45)

PAa(S2, Ś1) = M + (K − M)(m1 + m2), (46)

PAb(S2, Ś1) = (K − M)(m13 + m14), (47)

PAa(S2, Ś2) = (K − L − M + N)(m1 + m2)(m1 + m3)

+ (L − N)(m1 + m2) + (M − N)(m1 + m3) + N

}
, (48)

PAb(S2, Ś2) = (K − L − M + N){(m1 + m2)(m13 + m15)

+ (m1 + m3)(m13 + m14) + (m13 + m14)(m13 + m15)}
+ (L − N)(m13 + m14) + (M − N)(m13 + m15)


 . (49)

2 Selecting p1 = 0 makes p4 = 1 because
∑4

i=1pi = 1. It will result in different but analogous expressions for
r, ŕ, s and ś given in terms of mi without affecting the present argument.
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The significance of this splitting is that components PAb(S1, Ś2), PAb(S2, Ś1) and PAb(S2, Ś2)

of the Alice’s payoffs in equations (43) become zero when the predictions of LHV model agree
with the Bell–CHSH inequality. Cheon and Tsutsui [17] have also shown a similar splitting
using correlated payoff operators whose expectation values are the players’ payoffs.

Consider again the PD with the selection of the constants given in (15). Let the game be
played using correlated particles, for which substitutions can be made from (38) into the Nash
equilibrium condition (16). It gives

0 � (s − 1)(1 + ś), 0 � (ś − 1)(1 + s), (50)

where

s = m1 + m2 + m13 + m14, (51)

ś = m1 + m3 + m13 + m15. (52)

It can be noted that

• The predictions of the LHV model agree with the Bell–CHSH inequality. It makes mi � 0
for all 16 � i � 1. Combining it with (38), i.e.

∑4
i=1 mi = 1, gives

m13 = m14 = m15 = m16 = 0. (53)

So that, it reduces s and ś in (51, 52) to

s1 = m1 + m2, ś1 = m1 + m3. (54)

• The requirement (s1, ś1) = (0, 0) states that when the predictions of the LHV model agree
with the Bell–CHSH inequality, the pair (0, 0) is a NE. Equation (54) gives

m1 = m2 = m3 = 0. (55)

Before proceeding to raise a question, we make the following observations:

(1) Equations (20)–(35) give the probabilities pi in terms of mi , for 16 � i � 1, corresponding
to the EPR-type experiments. These probabilities satisfy the constraints (11) that emerge
when equations (4) are interpreted in terms of bi-linear payoffs of equations (5).

(2) Expressions (38) for r, s, ŕ and ś are obtained from the corresponding expressions for the
coin tossing case (10), while taking into consideration the constraints on probabilities for
perfectly correlated particles.

(3) Equations (53) and (55) together make s = ś = 0 in definitions (51) and (52). These
definitions correspond to the representation (15) of PD, for which constraints (17) should
be true in case s = ś = 0 is a NE when the game is played with coins. It is observed
that both (p9 + p10) and (p5 + p7) become zero from the definitions of pi in terms of
mi given in table 1, when equations (53) and (55) both are true. It means that when PD
gives s = ś = 0 as an equilibrium, the constraints on probabilities become identical in
the following two cases:

(a) The game is played using repeated tosses with four coins.
(b) The game is played with perfectly correlated particles such that the predictions of

LHV model agree with the Bell–CHSH inequality.

Bi-matrix games other than PD, presumably with different Nash equilibria, would give
rise to different but analogous constraints on the probabilities s, ś, r and ŕ . In the light of these
observations, following question arises immediately. What happens to the Nash conditions



Playing games with EPR-type experiments 9561

(50) when the predictions of LHV model disagree with the Bell–CHSH inequality? To answer
it consider the Nash conditions (50) with a substitution from (55). These give

0 � (s2 − 1)(1 + ś2)

0 � (ś2 − 1)(1 + s2)

}
, (56)

where

s2 = m13 + m14, ś2 = m13 + m15. (57)

Now we recall that in Cereceda’s analysis, m13 can take negative value when the predictions
of LHV model disagree with the Bell–CHSH inequality. Both (s2 − 1) and (ś2 − 1) in (56)
remain negative whether m13 is positive or negative. Similarly, both (1 + ś2) and (1 + s2)

remain positive whether m13 is positive or negative. Therefore, the Nash conditions (56), that
correspond to the representation (15) of PD, are not violated whether the predictions of the
LHV model agree or disagree with the Bell–CHSH inequality.

Players’ payoffs at the equilibrium (s2, ś2) can be found from equation (49) as

PAa(S2, Ś2) = PBa(S2, Ś2) = N

PAb(S2, Ś2) = (K − L − M + N)s2ś2 + (L − N)s2 + (M − N)ś2

PBb(S2, Ś2) = (K − L − M + N)s2ś2 + (M − N)s2 + (L − N)ś2


 , (58)

where s2 and ś2 are read from (57). For example, with PD’s representation (15), the players’
payoffs are obtained from equations (48) and (49) as

PA(S2, Ś2) = ś2(4 − s2) − s2 + 1
PB(S2, Ś2) = s2(4 − ś2) − ś2 + 1

}
. (59)

The NE (s2, ś2) in equations (57) corresponds when the predictions of LHV model disagree
with the Bell–CHSH inequality. Its defining inequalities (56) show that it exists even when
either s2 or ś2 takes negative values, which can be realized when m13 is negative. So that,
the NE in PD’s representation (15) can be ‘displaced’ when the predictions of LHV model
disagree with the Bell–CHSH inequality. Here displacement means that either s2 or ś2 can take
negative values. However, this extra freedom of assuming negative values does not disqualify
(s2, ś2) to exist as a NE. From equation (59) it can be noted that PA(S2, Ś2) and PB(S2, Ś2)

cannot be greater than 1 when both s2 and ś2 take negative values.
We show now that it may not be the case with another representation of PD. That is, the

extra freedom for s2 and ś2 to take negative values, granted when the predictions of the LHV
model disagree with the Bell–CHSH inequality, leads to disqualification of (s2, ś2) to exist as
a NE in that representation of PD.

Consider the PD with a slightly different value assigned to the constant N of the
game [17]

K = 3, L = 0, M = 5 and N = 0.2. (60)

In this representation, the inequalities (14) are reduced to

0 � (s − r)(1.8ś + 0.2), 0 � (ś − ŕ)(1.8s + 0.2). (61)

A substitution of r = ŕ = 1 from (38) and then addition of both the inequalities gives
1
9 {4(s + ś) + 1} � sś. (62)

Suppose that the predictions of LHV model disagree with the Bell–CHSH inequality, i.e. both
s and ś are to be replaced by s2 and ś2 in (62)

1
9 {4(s2 + ś2) + 1} � s2ś2, (63)
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where s2 and ś2 are given by (57). Interestingly, it is observed that the inequality (63 ) is
violated if −0.25 > (s2 + ś2) and the NE of equation (57) ceases to exist. Of course, it applies
to the representation of PD given by (60). Players’ payoffs are given as

PA(S2, Ś2) = ś2(4.8 − 1.8s2) + 0.2(1 − s2)

PB(S2, Ś2) = s2(4.8 − 1.8ś2) + 0.2(1 − ś2)

}
. (64)

As it is the case with the first representation of PD, the payoffs PA(S2, Ś2), PB(S2, Ś2) cannot
be greater than 0.2 when both s2 and ś2 take negative values.

It shows that in the physical implementation of PD, using perfectly correlated particles,
the two representations (15) and (60) behave differently from each other. In representation
(15), the disagreement of the predictions of LHV model with the Bell–CHSH inequality leads
to a displacement of the NE (s, ś) such that s and ś can assume negative values. Displacement
occurs but (s, ś) continues to exist as a NE.

On the other hand, in the representation (60), the disagreement of the predictions of LHV
model with the Bell–CHSH inequality leads to the disappearance of the NE (s, ś) when both
s and ś assume negative values and their sum becomes less than −0.25.

An alert reader may come up with a ‘minimalist’ interpretation of the present approach
as follows. Constraints (11) and (17) are required for the four-coin statistics (2) to make
(s, ś) = (0, 0) a NE when the PD is played in representation (15) with repeated tosses of
four coins. When the same game is played with pairs of perfectly correlated particles and the
predictions of LHV model disagree with the Bell–CHSH inequality, we can have (p9 +p10) or
(p5 + p7) becoming negative which denies (17). If it affects the solution of the game then one
can say that it is because of the change in the underlying probabilities of our physical system.
In our view, it is not the question of changing the underlying probabilities; it is the result of
a procedure addressing the question that asks what is the true quantum content of quantum
game in the following two steps:

(1) For perfectly correlated particles, developing an association that guarantees a classical
game results when the predictions of LHV model do not violate the Bell–CHSH inequality.

(2) With above association retained, how solutions of a game are affected when the LHV
model violates the Bell–CHSH inequality.

With these steps taken into consideration, the possibility of construction of a classical
game able to reproduce the overall effect of a quantum game cannot be taken to support the
argument that quantum games have no quantum content [8]. In our opinion, the question
quantum game theory asks is how quantum-mechanical aspects of a physical system leave
their mark on game-theoretic solutions. The possibility of classical construction of a quantum
game does not make the question disappear.

5. Concluding remarks

The results in this paper can be summarized as follows. To establish a better comparison
with the EPR-type experiments, a hypothetical physical implementation of a bi-matrix game
is developed that uses repeated tosses with four coins. This opens the way to introduce
directly the peculiar probabilities involved in the EPR-type experiments, designed to test the
Bell–CHSH inequality, into the proposed procedure to play a bi-matrix game.

The argument rests on the result that when perfect correlations exist between two particles
that are forwarded to two players, the violation of the Bell–CHSH inequality by the predictions
of a class of local hidden variable models forces certain probability measures to take negative
values. We investigate how this aspect affects a game and its solutions when it is physically
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implemented using the EPR-type set-up. In such a set-up, two choices are made available
to each player that are taken as their strategies. Players’ payoffs depend on the outcomes of
repeated measurements and the constants that define the game.

We find that a consistent set of probabilities can be obtained, given in terms of the
statistics involved in the four-coin tossing experiment, such that the game between the players
is interpretable as a classical bi-matrix game allowing mixed strategies. The proposal is
designed in a way that allows, in the next step, to introduce directly the peculiar probabilities
emerging in the EPR-type experiments.

We find that when the game is played with perfectly correlated pairs of particles, the
players’ payoffs are observed to split into two parts, which correspond to the two situations
arising when the predictions of the class of local hidden variable models do and do not violate
the Bell–CHSH inequality, respectively.

Apart from the splitting of the payoffs, we showed that the implementation using perfectly
correlated particles distinguishes between two representations of a game that are completely
equivalent in the classical context. We observed that the effects on a game-theoretic solution
concept, of whether the predictions of the local hidden variable model do or do not violate the
Bell–CHSH inequality, are sensitive to the particular representation used for the game.
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